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1. Introduction 

Curve fitting is the process of finding a mathematical function (curve) that best represents 
the relationship between a set of data points. To curve fit a given dataset, such as stress-strain 
data collected from experiments, the conventional approach begins by selecting a parameterized 
function, such as the Ogden model. Curve fitting software then applies traditional mathematical 
methods, such as least-squares regression or nonlinear optimization algorithms, to estimate the 
function parameters that best align the chosen function with the experimental data. As an 
alternative, the neural networks developed in this work provide a machine learning–based 
approach to curve fitting. Unlike traditional curve-fitting software, which predicts parameters 
within a predefined equation, neural networks learn the stress–strain relationship directly from 
training data and generate predictions without requiring an explicit equation.  
 
2. Synthetic Training data 
​ Synthetic stress–strain data generated using MATLAB was used to train the neural 
networks, as experimental data for hyperelastic materials are often costly and time-consuming to 
obtain. Generated data enables networks to observe diverse stress-strain behaviours, thereby 
improving their ability to generalize. The dataset consists of 9 models: Ogden, Reduced 
Polynomial, and Polynomial (each of orders 1, 2, and 3). The dataset has a shape of [9000 × 
210], containing 9000 rows (all unique samples, 1000 per model) and 210 columns: 1 for the 
model label, 100 for stress values, 100 for strain values, and 9 for model parameters (with 
unused parameter columns filled with NaN for models requiring fewer than 9). In each sample, 
the strain values were generated as 100 random numbers between 0 and 3, sorted in ascending 
order. Random noise between 3–5% was added to 50% of the stress values to mimic 
experimental uncertainty. The remaining noise-free samples allowed the model to learn the true 
stress-strain relationship.  
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3. Data Preprocessing 
​ The dataset was split into 80% training and 20% testing, where the input features 
(X) are stress and strain, and the target features (y) are the model parameters. All values 
were normalized to the range [0,1] using the equation in Figure 2, with strain scaled using 
fixed bounds of 0.0 (min) and 3.0 (max). Stress values were normalized at every point, 
where each stress point was normalized using the minimum and maximum values of that 
point across all training samples of the corresponding model. For example, to normalize 
the value of stress_32 in the Ogden1 model, the minimum and maximum are found by 
comparing all training samples at that same column (stress_32) within Ogden1. This 
process is repeated for every stress column, meaning each model has 100 distinct 
min/max values that correspond to its 100 stress points. The same normalization 
approach was applied to the target features (parameters). Since each model can have up to 
nine parameters, this results in a maximum of nine distinct min/max values per model, 
with fewer if the model uses fewer parameters. We only use the min/max from the 
training set to ensure consistent scaling. For example, if a feature in the training set has a 
min of 0 and a max of 100, scaling maps 100→1.0 and 50→0.5. However, if the test set 
were scaled with its own min/max (from the test set) and the maximum was 50, then 50 
would incorrectly be mapped to 1.0, thus leading to normalization inconsistencies.  
 
 
 
 
 
 
 
 
 
4. Network Architecture  
​ The proposed model is a fully connected feedforward neural network consisting of six 
layers: an input layer, a flatten layer, three hidden dense layers with 128, 64, and 32 neurons, 
respectively, each using ReLu activation functions, and a dense output layer where the number of 
neurons corresponds to the number of parameters in the selected model. 
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4.1 Flattening the Input 

The input layer accepts data with shape (100, 2), where each sample corresponds to a 
stress–strain curve with 100 points, and each point contains two features: stress and strain. This 
forms a 2D array of dimension 100×2. Since dense layers require 1D vectorized input, a flatten 
layer is applied to convert the input into a single vector of length 200. 
 
 

 

 

 

4.2 Dense Layers 

The dense layers are fully connected layers, meaning that every neuron in a layer receives 
input from every neuron in the preceding layer, as seen in Figure 5. The dense layers function as 
a hierarchy of pattern recognizers. The early layers capture local patterns in the stress-strain data 
while the deeper layers combine these patterns into higher-level representations that describe the 
overall behaviour of the material. In the hidden layers, each neuron combines the inputs through 

 
 



4 

a weighted summation and then applies an activation function, which allows the network to 
capture the complex relationships between hyperelastic stress-strain [2].  

 

 

 

 

 

 

 

 

5. Training the Neural Networks 
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5.1 Forward Propagation  

Forward propagation initiates the training process, in which the training data is passed 
through the network’s layers to produce a predicted output. The equations in Figure 7 describe 
the forward propagation process through the proposed network. The input A[0] represents the 
stress–strain curve sampled at 100 points with two features per point. The flattened layer 
reshapes this into a single 200-dimensional vector, A[1], which is then passed into the first dense 
layer. In each dense layer, the neuron outputs are computed by taking a weighted sum of the 
previous layer’s activations, Z[n layer] = W[n layer]*A[n-1 layer] + b[n layer], followed by the application of a 
non-linear activation function A[n layer] = f (Z[n layer]) = ReLU (Z[n layer]) [3]. The ReLU activation 
function was chosen for the hidden layers because it has been shown to perform effectively in 
capturing non-linear relationships in regression tasks [4]. Finally, the output layer produces the 
network predictions. Training was carried out for 100 epochs with a batch size of 8, meaning the 
network updated its weights and biases after every 8 samples, and completed 100 full passes 
through the training dataset. 
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5.2 Loss Function 
​ Once parameter predictions are made during forward propagation, these predictions are 
passed through the mean average error (MAE) loss function. The Mean Absolute Error (MAE) 
loss function computes the average of the absolute differences between the predicted and true 
parameter values. Mean Squared Error (MSE) is more sensitive to outliers since it squares the 
errors, whereas MAE applies a uniform penalty to all errors. This is important for stress–strain 
data, which often contains noise. Using MAE helps the model remain less influenced by outliers, 
focus on the general trends in the data, and produce more stable parameter predictions [5]. 
 
 
 
 
 
 
 
 
 
5.3 Back Propagation  
​ After the model compares its predictions to the true values using the loss function, it must 
determine how much to adjust the weights and biases, as well as whether these changes should 
increase or decrease. To do this, the network performs backpropagation, a technique that moves 
backward through the layers to calculate how each weight and bias contributed to the final error. 
These calculations, known as gradients, serve as a guide for optimization algorithms, such as the 
Adam (Adaptive Moment Estimation) optimizer used in the proposed network. The optimizer 
then uses these gradients to determine exactly which weights and biases to update, and in what 
direction, to minimize the prediction error [6]. 
 
 
6. Evaluating the Neural Networks 
 
6.1 Interpolation 
​ Before the models can predict parameters, the evaluation data must be interpolated to 
match the input shape the model was trained on. The model expects an input of shape (100, 2), 
meaning 100 samples with 2 features: stress and strain. In practice, evaluation datasets don’t 
often have exactly 100 samples, so interpolation is required. First, the strain is interpolated by 
taking the minimum and maximum values and generating 100 evenly spaced points between 
them. Next, the stress is interpolated by estimating values at these new strain points. For each 
new strain point, the algorithm takes the two nearest original strain values and linearly 
interpolates the corresponding stress. 
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6.2 Selection of the Best-Fit Hyperelastic Model 
​ To determine the best-fit hyperelastic model for a given dataset, each neural network first 
predicts the material parameters. These parameters are then used to calculate stress using the 
corresponding stress equations. The predicted stresses from every model are compared with the 
true experimental stresses to evaluate accuracy. Although it may seem that the model is tested on 
data it had already seen, the network does not memorize these stress values, but instead, 
generates predictions based on the stress-strain relationship learned during training. The 
R^2-score is used as the evaluation metric, as it measures how well a predicted curve matches 
the overall shape of the experimental stress–strain data. The neural network with the highest 
R^2-score is then selected as the best-fit model.  
 
 
 
 
 
 
 
 
 

 
 



8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



9 

6.3 Mapping Parameter Columns to Parameter Type 
​ In the training data, the nine parameters correspond to different material constants 
depending on the chosen model. When a model outputs parameters, they are listed as an array in 
the format [param_1, param_2, …, param_N], where N is the number of constants in that model. 
The following table provides the mapping between these generic parameters and their 
corresponding hyperelastic constants. 
 

 Ogden1 Ogden2 Ogden3 Reduced 
Poly1 

Reduced 
Poly2 

Reduced 
Poly3 

Poly1 Poly2 Poly3 

Param1 mu1 mu1 mu1 C10 C10 C10 C10 C10 C10 

Param2 alpha1 alpha1 alpha1  C20 C20 C01 C01 C01 

Param3  mu2 mu2   C30  C20 C20 

Param4  alpha2 alpha2     C11 C11 

Param5   mu3      C02 

Param6   alpha3      C30 

Param7         C21 

Param8         C12 

Param9         C03 

 
Sample Results 
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Conclusions 
The proposed neural networks demonstrate the use of machine learning as an approach to 

stress–strain curve-fitting. The model achieved an average R² score of 0.93, demonstrating strong 
predictive performance. Future improvements could focus on diversifying the training 
parameters to enhance generalizability. The findings highlight the potential of neural networks to 
complement or extend traditional curve-fitting methods, offering greater flexibility and 
adaptability for modelling complex material behavior. 
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