Predicting Hyperelastic Parameters using
Artificial Neural Networks

Nathan Chiu

1. Introduction

Curve fitting is the process of finding a mathematical function (curve) that best represents
the relationship between a set of data points. To curve fit a given dataset, such as stress-strain
data collected from experiments, the conventional approach begins by selecting a parameterized
function, such as the Ogden model. Curve fitting software then applies traditional mathematical
methods, such as least-squares regression or nonlinear optimization algorithms, to estimate the
function parameters that best align the chosen function with the experimental data. As an
alternative, the neural networks developed in this work provide a machine learning—based
approach to curve fitting. Unlike traditional curve-fitting software, which predicts parameters
within a predefined equation, neural networks learn the stress—strain relationship directly from
training data and generate predictions without requiring an explicit equation.

2. Synthetic Training data

Synthetic stress—strain data generated using MATLAB was used to train the neural
networks, as experimental data for hyperelastic materials are often costly and time-consuming to
obtain. Generated data enables networks to observe diverse stress-strain behaviours, thereby
improving their ability to generalize. The dataset consists of 9 models: Ogden, Reduced
Polynomial, and Polynomial (each of orders 1, 2, and 3). The dataset has a shape of [9000 x
210], containing 9000 rows (all unique samples, 1000 per model) and 210 columns: 1 for the
model label, 100 for stress values, 100 for strain values, and 9 for model parameters (with
unused parameter columns filled with NaN for models requiring fewer than 9). In each sample,
the strain values were generated as 100 random numbers between 0 and 3, sorted in ascending
order. Random noise between 3-5% was added to 50% of the stress values to mimic
experimental uncertainty. The remaining noise-free samples allowed the model to learn the true
stress-strain relationship.

Figwre 13 10 Sample Curves for Each Model i the Synthetic Stress-Sirain Trmining Datnset

3. Data Preprocessing

The dataset was split into 80% training and 20% testing, where the input features
(X) are stress and strain, and the target features (y) are the model parameters. All values
were normalized to the range [0,1] using the equation in Figure 2, with strain scaled using
fixed bounds of 0.0 (min) and 3.0 (max). Stress values were normalized at every point,
where each stress point was normalized using the minimum and maximum values of that
point across all training samples of the corresponding model. For example, to normalize
the value of stress 32 in the Ogdenl model, the minimum and maximum are found by
comparing all training samples at that same column (stress 32) within Ogdenl. This
process is repeated for every stress column, meaning each model has 100 distinct
min/max values that correspond to its 100 stress points. The same normalization
approach was applied to the target features (parameters). Since each model can have up to
nine parameters, this results in a maximum of nine distinct min/max values per model,
with fewer if the model uses fewer parameters. We only use the min/max from the
training set to ensure consistent scaling. For example, if a feature in the training set has a
min of 0 and a max of 100, scaling maps 100—1.0 and 50—0.5. However, if the test set
were scaled with its own min/max (from the test set) and the maximum was 50, then 50
would incorrectly be mapped to 1.0, thus leading to normalization inconsistencies.

(X - x.m.wnu..\l}

h.\'UR.\ IALIZED

(Xypaxmium = anmvom?

Figure 2: Normalization Formula used to Scale Data

4. Network Architecture

The proposed model is a fully connected feedforward neural network consisting of six
layers: an input layer, a flatten layer, three hidden dense layers with 128, 64, and 32 neurons,
respectively, each using ReLu activation functions, and a dense output layer where the number of
neurons corresponds to the number of parameters in the selected model.

> "(J
AN
Flaty (j
“laliming b
: :
N {, ~,
Dense Layer | Dense Layer 2 Dense Layer 3 Dense Output Layer 4
Input Layer Flatten Layer {128 Neurons) {64 Newrons) (32 Neurons) (N parameiers = N neurons)

Fully Connected Dense Layvers

Figure 3: Schematic of Proposed Neural Network

4.1 Flattening the Input

The input layer accepts data with shape (100, 2), where each sample corresponds to a
stress—strain curve with 100 points, and each point contains two features: stress and strain. This
forms a 2D array of dimension 100%2. Since dense layers require 1D vectorized input, a flatten
layer is applied to convert the input into a single vector of length 200.

layers.Flatten ()
[[stress 1, strainl], [stress 2, strain
— [stress_1, strain_1, stress_2. strain

2], ..., [stress 100, strain_100]]
2, ..., stress 100, strain_100]

Figure 4: Flattening Input to Match Required 113 vectorized input

4.2 Dense Layers

The dense layers are fully connected layers, meaning that every neuron in a layer receives
input from every neuron in the preceding layer, as seen in Figure 5. The dense layers function as
a hierarchy of pattern recognizers. The early layers capture local patterns in the stress-strain data
while the deeper layers combine these patterns into higher-level representations that describe the
overall behaviour of the material. In the hidden layers, each neuron combines the inputs through

a weighted summation and then applies an activation function, which allows the network to
capture the complex relationships between hyperelastic stress-strain [2].

Figure 5: Every neuron in one layer is connected to
every neuron in the previous[1]

5. Training the Neural Networks

Forward Propagation C :

 J

Repeat Process for N
Epochs
— Predicted Parameters True Parameters
Update Weights ADAM Get < MAE Loss Functi
and Biases Optimizer Gradients o

Back Propagation

Figure 6: Neural Network training process

5.1 Forward Propagation

Forward propagation initiates the training process, in which the training data is passed
through the network’s layers to produce a predicted output. The equations in Figure 7 describe
the forward propagation process through the proposed network. The input A" represents the
stress—strain curve sampled at 100 points with two features per point. The flattened layer
reshapes this into a single 200-dimensional vector, A", which is then passed into the first dense
layer. In each dense layer, the neuron outputs are computed by taking a weighted sum of the
previous layer’s activations, ZM et = Wyinlaverlk AIn-Uayer] 4 pintayer] *f5]]gwed by the application of a
non-linear activation function Al '™l = f(ZIn ey = ReLU (Z ™) [3]. The ReLU activation
function was chosen for the hidden layers because it has been shown to perform effectively in
capturing non-linear relationships in regression tasks [4]. Finally, the output layer produces the
network predictions. Training was carried out for 100 epochs with a batch size of 8, meaning the
network updated its weights and biases after every 8 samples, and completed 100 full passes
through the training dataset.

Layer 1, Input layer — A" = X | Shape [100x2]

Layer 2, Flatten Layer — A"l = Flatten (A"") | Shape [200]

Layer 3, Dense layer — 7121 = W #AUT 4 121 A% = ¢(72) = ReLU (217
Layer 4, Dense layer — 2P = W #ALR + g8 Al = g7 = ReLU (21*)
Layer 5, Dense layer — ZH4 = W = AP 4 gl - Al = g 718 = ReLU (Z14])
Layer 6, Dense Output Layer — Z = WIFI # AR 4 b3 - A= (Z05]) = Z1%)

X = input data

Alr el = Activation (output) of layer n

ZImlaver] = Weighted input to layer a/linear combination of layer n before activation
bl ed = Bias for layer n

f(ZIMvErly = Activation function applied to ZI7 e

Fizure 7: Forward Propagation Equations of the Proposed Neural Metwork [3]

5.2 Loss Function

Once parameter predictions are made during forward propagation, these predictions are
passed through the mean average error (MAE) loss function. The Mean Absolute Error (MAE)
loss function computes the average of the absolute differences between the predicted and true
parameter values. Mean Squared Error (MSE) is more sensitive to outliers since it squares the
errors, whereas MAE applies a uniform penalty to all errors. This is important for stress—strain
data, which often contains noise. Using MAE helps the model remain less influenced by outliers,
focus on the general trends in the data, and produce more stable parameter predictions [5].

n

AR - .
MAE = — 2’1 | x, - x|
=

Figure 8: MAE Formula

5.3 Back Propagation

After the model compares its predictions to the true values using the loss function, it must
determine how much to adjust the weights and biases, as well as whether these changes should
increase or decrease. To do this, the network performs backpropagation, a technique that moves
backward through the layers to calculate how each weight and bias contributed to the final error.
These calculations, known as gradients, serve as a guide for optimization algorithms, such as the
Adam (Adaptive Moment Estimation) optimizer used in the proposed network. The optimizer
then uses these gradients to determine exactly which weights and biases to update, and in what
direction, to minimize the prediction error [6].

6. Evaluating the Neural Networks

6.1 Interpolation

Before the models can predict parameters, the evaluation data must be interpolated to
match the input shape the model was trained on. The model expects an input of shape (100, 2),
meaning 100 samples with 2 features: stress and strain. In practice, evaluation datasets don’t
often have exactly 100 samples, so interpolation is required. First, the strain is interpolated by
taking the minimum and maximum values and generating 100 evenly spaced points between
them. Next, the stress is interpolated by estimating values at these new strain points. For each
new strain point, the algorithm takes the two nearest original strain values and linearly
interpolates the corresponding stress.

Original vs Interpolated Stress-5train

2.5 4 . -
#— Original ..
Interpolated (100 points)
2.0 4 |
L5
[T
[T
g
I
1.0 4 |
05 |
. il
0.0 e
T T i T ¥ 2
0.0 0.5 1.0 1.5 2.0 2.5

CRFEIR

Figure 9: 130 siress-sirain points interpolated o 100 stress-strain points

6.2 Selection of the Best-Fit Hyperelastic Model

To determine the best-fit hyperelastic model for a given dataset, each neural network first
predicts the material parameters. These parameters are then used to calculate stress using the
corresponding stress equations. The predicted stresses from every model are compared with the
true experimental stresses to evaluate accuracy. Although it may seem that the model is tested on
data it had already seen, the network does not memorize these stress values, but instead,
generates predictions based on the stress-strain relationship learned during training. The
R”2-score is used as the evaluation metric, as it measures how well a predicted curve matches
the overall shape of the experimental stress—strain data. The neural network with the highest
R"2-score is then selected as the best-fit model.

ogdeand

r"2: 0.8015783795141659]
ogden

r*2: 0.74911451170080%3
ogdani

r~2: 0.9358B000558278381
polyl

e*2: 0.64522098732862182
polys

r"2: O.7BZE3T0475090516
poly3

r"2: 0.7462507723530426
red polyl

r*2: 0.B253432401197821
red polyl

r*2: 0.8491720723453802
red polyd

eh2: 0.25714491426113195

Chosen Model: ogden3
R"2 Zcore: (0.935809095827E3488

Predicted Parameters|[2,.0B568E8%9%0e-01 8,53548926e-03 8.13131442e-0Z2
—6.294424090e+00 4.BBS543475e-03 9.13595826le-02)

Figure 10: Terminal output that displays the results from each neural network and displaying the best
performing one based on R*2

Predicted ogden3 vs True Stress-Strain Curve
25

— Truse {interpolatedy
== [Predicted

2,04

151

Stress

1404

034

0.0+

o as 10 15 P 28
srain 4 - 1)

Figure 11: Plotting the Best-Fit Model

6.3 Mapping Parameter Columns to Parameter Type

In the training data, the nine parameters correspond to different material constants
depending on the chosen model. When a model outputs parameters, they are listed as an array in
the format [param_1, param_2, ..., param_N|, where N is the number of constants in that model.
The following table provides the mapping between these generic parameters and their
corresponding hyperelastic constants.

Ogdenl Ogden2 Ogden3 Reduced | Reduced | Reduced | Polyl Poly2 Poly3
Poly1 Poly2 Poly3
Paraml mul mul mul C10 C10 C10 C10 C10 C10
Param2 alphal alphal alphal C20 C20 Co1 Co1 Co1
Param3 mu2 mu2 C30 C20 C20
Param4 alpha2 alpha2 Cl1 Cll
Param5 mu3 C02
Param6 alpha3 C30
Param7 C21
Param8 Cl12
Param9 C03
Sample Results
& DA
! /z'
. o
. y a "
Chosen Model: ogdenl Chosen Model: ogden3
R"2 Score: 0.9746661 385881633 R"2 Score: 0.9392594543657758

Predicted ngden] vi Tue Stress-Strain Curis

Tsa (rinrpolated|
Predted

Chosen Model: ogdenl
R*2 Score: 0.9394882356709204

10

Conclusions

The proposed neural networks demonstrate the use of machine learning as an approach to
stress—strain curve-fitting. The model achieved an average R? score of 0.93, demonstrating strong
predictive performance. Future improvements could focus on diversifying the training
parameters to enhance generalizability. The findings highlight the potential of neural networks to
complement or extend traditional curve-fitting methods, offering greater flexibility and
adaptability for modelling complex material behavior.

[1] GeeksforGeeks. (2025 June 14) What is fully connected layer in deep learmng7 GeeksforGeeks

[2]Montufar, G. Pascanu R., Cho K., & Benglo Y. (n d.). On the Number 0f Linear Reglons of Deep Neural Networks.
https://arxi /1402.1

[3]Chapter 8 Neural Networks. (n.d.).
https://openlearninglibrary.mit.edu/assets/courseware/v1/9¢c36c444e5df10eef7ce4d052e4a2ed 1 /asset-v1%3IAMITx%2B6.036
%2B1T2019%2Btype%40asset%2Bblock/notes_chapter Neural Networks.pdf

[4]Brownlee, J. (2020, August 20). A Gentle Introduction to the Rectified Linear Unit (ReLU).
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

[5]Google. (n.d.). Linear regression: Loss. Google.
https://developers.google.com/machine-learning/crash-course/linear-regression/loss

[6]Bergmann, D., & Stryker, C. (2025, July 2). What is backpropagation?. IBM.

https://www.geeksforgeeks.org/deep-learning/what-is-fully-connected-layer-in-deep-learning/
https://arxiv.org/pdf/1402.1869
https://openlearninglibrary.mit.edu/assets/courseware/v1/9c36c444e5df10eef7ce4d052e4a2ed1/asset-v1%3AMITx%2B6.036%2B1T2019%2Btype%40asset%2Bblock/notes_chapter_Neural_Networks.pdf
https://openlearninglibrary.mit.edu/assets/courseware/v1/9c36c444e5df10eef7ce4d052e4a2ed1/asset-v1%3AMITx%2B6.036%2B1T2019%2Btype%40asset%2Bblock/notes_chapter_Neural_Networks.pdf
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://developers.google.com/machine-learning/crash-course/linear-regression/loss
https://www.ibm.com/think/topics/backpropagation

